COMPUTER SCIENCE, BS

Banner Code: VS-BS-CS

Academic Advising

Phone: 703-993-1530 Email: csug@gmu.edu

Website: http://cs.gmu.edu/prospective-students/undergraduate-

programs/bs-in-computer-science/

The objectives of the BS in Computer Science Program relate to the abilities of the graduates several years after graduation. The objectives include:

- Foundation for successful careers in industry: Graduates of the program will have a broad understanding of the fundamental concepts, methodologies, tools, and applications of computer science. They will have the educational foundation that leads to successful careers in the computing industry.
- Foundation for graduate study: Graduates of the program will have the academic preparation for successful completion of rigorous graduate programs.
- Professional preparation: Graduates will have effective written and oral communication skills, and be able to work collaboratively in a professional and ethical manner.

The bachelor's program in Computer Science is accredited by the Computing Accreditation Commission of ABET, http://www.abet.org.

Admissions & Policies

Policies

Advanced Placement, Credit by Exam

A score of 4 on the Advanced Placement (AP) computer science exam qualifies the student for credit in CS 112 Introduction to Computer Programming (Mason Core). A score of 4 on the International Baccalaureate (IB) computer science exam qualifies students for credit in CS 112 Introduction to Computer Programming (Mason Core), and a score of 5 or more qualifies students for credit in CS 211 Object-Oriented Programming.

Change of Major

Students who are considering computer science as their major must meet with the Volgenau School of Engineering Coordinator of Undergraduate Advising, 2500 Nguyen Engineering Building. Students considering a change of major to computer science must have a GPA of at least 2.75 in all computer science and math courses, and successfully completed one of CS 112 (http://catalog.gmu.edu/preview_course_nopop.php?catoid=29&coid=302778) or CS 211 (http://catalog.gmu.edu/preview_course_nopop.php? catoid=29&coid=302780), and one of MATH 113 (http://catalog.gmu.edu/preview_course_nopop.php?catoid=29&coid=305052), MATH 114 (http://catalog.gmu.edu/preview_course_nopop.php? catoid=29&coid=305053) or MATH 125 (http://catalog.gmu.edu/preview_course_nopop.php?catoid=29&coid=305056), with a grade of B or better. See Change of Major for more information.

Computer Science, Computer Engineering Double Major

Computer Science majors can earn a double major in Computer Science and Computer Engineering if they complete additional credits beyond the 120 credits required for the Computer Science degree. The additional credits must be part of an approved plan of study. For more information, visit the department website.

Cooperative Education

Students may participate in the Mason cooperative education program or a work-study program in the Washington, D.C. area.

Grades

Students must earn a C or better in any course intended to satisfy a prerequisite for a computer science course. Computer science majors may not use more than one course with grade of C- or lower toward department requirements.

Repeating Courses

Students may attempt an undergraduate course taught by the Volgenau School of Engineering twice. A third attempt requires approval of the department offering the course. This policy does not apply to STAT 250 Introductory Statistics I (Mason Core), which follows the normal university policy for repeating undergraduate courses.

The CS Department may not allow students to retake certain highdemand CS courses in which they have already earned a grade of C or better simply to improve their GPA.

Writing-Intensive Requirement

Computer science majors complete the writing-intensive requirement through a sequence of projects and reports in CS 306 Synthesis of Ethics and Law for the Computing Professional (Mason Core) and CS 321 Software Engineering. Faculty members provide feedback on students' expository writing.

Termination from the Major

No math, science, or Volgenau School of Engineering course that is required for the major may be attempted more than three times. Those students who do not successfully complete such a course within three attempts will be terminated from the major. Undeclared students in the Volgenau School who do not successfully complete a course required for a Volgenau School major within three attempts will also be terminated.

In addition, students in the Volgenau School with evidence of continued failure to make adequate progress toward declaring or completing a Volgenau School major will also be terminated. Adequate progress is determined by the major program. For more information, see AP.5.2.4 Termination from the Major (https://catalog.gmu.edu/policies/academic/undergraduate-policies/#ap-5-2-4).

Once a student has attempted one of these courses twice unsuccessfully, the third attempt must be no later than the next semester of enrollment, excluding summers. Failure to take the course at that time will result in termination from the major. A third attempt of a Volgenau School of Engineering course requires support by the student's major department as well as permission by the department offering the course. This permission is not guaranteed. If the student is unable to take the course when required, the student may request an extension to a future semester; extensions require approval of the student's advisor, their

department, and the Associate Dean for Undergraduate Programs. The deadline for extension requests is the add deadline for the semester in which the course is required.

Students who have been terminated from a Volgenau School of Engineering major may not register for a Volgenau School course without permission of the department offering the course. This applies to all undergraduate courses offered by the Volgenau School except IT 104 Introduction to Computing (Mason Core) and STAT 250 Introductory Statistics I (Mason Core).

A student may not declare any major in the Volgenau School of Engineering if the student has previously met the termination criteria for that major at any time, regardless of what the student's major was at the time the courses were taken.

Requirements

Degree Requirements

Total credits: 120

Computer Science Core

Code	Title	Credits
CS 110	Essentials of Computer Science (Mason Core) ¹	3
CS 112	Introduction to Computer Programming (Mason Core)	4
CS 211	Object-Oriented Programming	3
CS 262	Introduction to Low-Level Programming	3
CS 306	Synthesis of Ethics and Law for the Computing Professional (Mason Core)	3
CS 310	Data Structures	3
CS 321	Software Engineering	3
CS 330	Formal Methods and Models	3
CS 367	Computer Systems and Programming	4
CS 471	Operating Systems	3
CS 483	Analysis of Algorithms	3
Total Credits		35

Must be taken within the first year as an Applied Computer Science or Computer Science major.

Senior Computer Science

Code	Title	Credits
Select one from th	e following:	3
CS 455	Computer Communications and Networking	
CS 468	Secure Programming and Systems	
CS 475	Concurrent and Distributed Systems	
Select four additio	nal courses from the following:	12
CS 425	Game Programming I	
CS 440	Language Processors and Programming Environments	
CS 450	Database Concepts	
CS 451	Computer Graphics	

CS 455	Computer Communications and Networking	
CS 463	Comparative Programming Languages	
CS 465	Computer Systems Architecture	
CS 468	Secure Programming and Systems	
CS 469	Security Engineering	
CS 475	Concurrent and Distributed Systems	
CS 477	Mobile Application Development	
CS 480	Introduction to Artificial Intelligence	
CS 482	Computer Vision	
CS 484	Data Mining	
CS 485	Autonomous Robotics	
CS 490	Design Exhibition ¹	
CS 491	Industry-Sponsored Senior Design Project	
CS 499	Special Topics in Computer Science ²	
MATH 446	Numerical Analysis I	
or OR 481	Numerical Methods in Engineering	
Total Credits		15

At most 3 credits total of CS 490 Design Exhibition and CS 491 Industry-Sponsored Senior Design Project may be counted toward

At most 3 credits total of CS 499 Special Topics in Computer Science may be counted toward the senior computer science requirement.

the senior computer science requirement.

Mathematics

Code	Title	Credits
MATH 113	Analytic Geometry and Calculus I (Mason Core)	4
MATH 114	Analytic Geometry and Calculus II	4
MATH 125	Discrete Mathematics I (Mason Core)	3
MATH 203	Linear Algebra	3
MATH 213	Analytic Geometry and Calculus III	3
Total Credits		17

Note:

MATH 104 Trigonometry and Transcendental Functions, MATH 105 Precalculus Mathematics, MATH 108 Introductory Calculus with Business Applications (Mason Core), and courses with an IT designation (and any associated cross-listed courses) cannot be counted toward this degree.

Statistics

Code	Title	Credits
STAT 344	Probability and Statistics for Engineers and Scientists I	3
Total Credits		3

Those planning to take MATH 352 Statistics may replace STAT 344 Probability and Statistics for Engineers and Scientists I with MATH 351 Probability.

Computer Science-Related Courses

Students may need to choose electives to satisfy prerequisites for the following courses:

Code	Title	Credits
Select two courses	s from the following:	6
STAT 354	Probability and Statistics for Engineers and Scientists II	
OR 335	Discrete Systems Modeling and Simulation	
OR 441	Deterministic Operations Research	
OR 442	Stochastic Operations Research	
ECE 301	Digital Electronics	
ECE 331	Digital System Design	
ECE 332	Digital Electronics and Logic Design Lab	
ECE 350	Embedded Systems and Hardware Interfaces	
ECE 446	Device Driver Development	
ECE 447	Single-Chip Microcomputers	
ECE 511	Computer Architecture	
SWE 432	Web Application Development	
SWE 437	Software Testing and Maintenance	
SWE 443	Software Architectures	
SYST 371	Systems Engineering Management	
SYST 470	Human Factors Engineering	
PHIL 371	Philosophy of Natural Sciences	
PHIL 376	Symbolic Logic	
ENGH 388	Professional and Technical Writing	
Any MATH or CS MATH 351) 1	S course numbered above 300 (except	
Total Credits		6

Those planning to take MATH 352 Statistics may replace STAT 344 Probability and Statistics for Engineers and Scientists I with MATH 351 Probability.

Communication

Students need three credits of communication:

Code	Title	Credits
COMM 100	Public Speaking (Mason Core)	3
or COMM 101	Fundamentals of Communication (Mason Cor	e)

Natural Science

Code	Title	Credits
Select 12 cred	dits of natural science	12
Total Credits		12

The courses should be intended for science and engineering students and must include a two course sequence with laboratories. Some approved combinations have a total of more than 12 hours.

Approved Two-Course Sequences with Laboratories		
Code	Title	Credits
Biology		
BIOL 103	Introductory Biology I (Mason Core)	4

BIOL 106 & BIOL 107	Introductory Biology II Laboratory (Mason Core) and Intro Biology II Lecture (Mason Core)	4
Chemistry		
CHEM 211 & CHEM 213	General Chemistry I (Mason Core) and General Chemistry Laboratory I (Mason Core)	4
CHEM 212 & CHEM 214	General Chemistry II (Mason Core) and General Chemistry Laboratory II (Mason Core)	4
Geology		
GEOL 101 & GEOL 102	Introductory Geology I (Mason Core) and Introductory Geology II (Mason Core)	8
Physics		
PHYS 160 & PHYS 161	University Physics I (Mason Core) and University Physics I Laboratory (Mason Core)	4
PHYS 260 & PHYS 261	University Physics II (Mason Core) and University Physics II Laboratory (Mason Core)	4

Additional Mason Core

Students must complete all Mason Core requirements not fulfilled by major requirements.

Code	Title	Credits
Written Comm	nunication ¹	6
Literature		3
Arts		3
Western Civiliz	zation/World History	3
Social and Bel	havioral Sciences	3
Global Unders	tanding	3
Total Credits		21

CS majors must take the Natural Sciences section of ENGH 302 Advanced Composition (Mason Core).

Electives

Code	Title	Credits
Students mu	ust complete 8 elective credits	8
Total Credits		8

Honors

Honors in the Major

The Department of Computer Science offers a CS Honors Program for students with strong computational foundations and the drive to delve deeper into computing. The program is based on the bachelor of science in computer science and applied computer science curriculum and is distinct from the University Honors College curriculum.

Entry Requirements

Students must be seeking a Bachelor of Science in Computer Science or a Bachelor of Science in Applied Computer Science and must apply for entry into the CS Honors Program after completing 12 credits of CS

courses. Applicants must meet the GPA requirements outlined below to enter into the CS Honors Program.

Honors Requirements

CS Honors Program students must fulfill all standard courses required by the Bachelor of Science in Computer Science or Applied Computer Science degree as well as the following additional requirements:

- GPA Requirement: Students must maintain an overall GPA of at least 3.50 and a GPA of at least 3.50 for courses which count towards the BS/CS or BS/ACS major including math, natural sciences, and all CS/ SWE courses.
- Research Project Requirement: Students must complete a significant research project prior to graduation. Students should seek out a CS faculty member willing to serve as their research advisor for the project. The project should comprise original work by the student and be demonstrated via two channels:
 - a. a written project report that is approved by the student's research advisor and submitted to the department;
 - a presentation of the project to an audience of students and/or faculty.
- Advanced Course Requirement: At least two Advanced Courses must be completed. A complete list of acceptable advanced courses is maintained by the CS department and is available on the department web site.

Accelerated Master's

BS (selected)/Operations Research, Accelerated MS

Overview

Highly-qualified students in BS programs have the option of obtaining an accelerated Operations Research, MS.

For more detailed information, see AP.6.7 Bachelor's/Accelerated Master's Degrees. For policies governing all graduate degrees, see AP.6 Graduate Policies.

Admission Requirements

Mason undergraduate students majoring in both engineering and nonengineering disciplines may apply to this option if 1) such an accelerated Operations Research, MS pathway is allowable from the student's BS program, which will be determined by the academic advisors of both the BS and MS programs and by the SEOR department chair, 2) they have earned 90 undergraduate credits with an overall GPA of at least 3.30, and 3) they have completed all MATH and PHYS requirements. Criteria for admission are identical to criteria for admission to the Operations Research, MS program.

Students must additionally complete MATH 203 prior to applying for the graduate program.

Accelerated Option Requirements

Students must complete all credits that satisfy requirements for both the BS and MS programs. Up to two courses (6 credits) of approved master's level courses taken as part of the undergraduate degree may be applied to the graduate degree. The courses selected for this purpose must be approved by the academic advisors of both the BS and MS programs and by the SEOR department chair.

For the BS programs that allow undergraduate electives from the department of systems engineering and operations research, the students may choose the graduate version of such elective courses to replace the corresponding undergraduate courses.

Degree Conferral

Students must apply the semester before they expect to complete the BS requirements to have the BS degree conferred. In addition, at the beginning of the student's final undergraduate semester, students must complete a Bachelor's/Accelerated Master's Transition form that is submitted to the Office of the University Registrar and the VSE Graduate Admissions Office. At the completion of MS requirements, a master's degree is conferred.

BS (selected)/Statistical Science, Accelerated MS

Overview

Highly-qualified students in BS programs have the option of applying to the accelerated Statistical Science, MS program.

For more detailed information, see AP.6.7 Bachelor's/Accelerated Master's Degrees. For policies governing all graduate degrees, see AP.6 Graduate Policies.

Admission Requirements

No specific undergraduate BS degree is required. Students enrolled in any BS degree may apply to the accelerated Statistical Science, MS program if such an accelerated Statistical Science, MS pathway is allowable from the student's BS program, which will be determined by the academic advisors of both the BS and MS programs; and if they have earned 90 undergraduate credits with an overall GPA of 3.00. Students must have successfully completed the following Mason courses each with a grade of C or better prior to admission to the accelerated program:

Code	Title	Credits
MATH 213	Analytic Geometry and Calculus III	3
MATH 203	Linear Algebra	3
or MATH 321	Abstract Algebra	
STAT 250	Introductory Statistics I (Mason Core)	3
or STAT 344	Probability and Statistics for Engineers and Scientists I	
STAT 346	Probability for Engineers	3
or MATH 351	Probability	
STAT 362	Introduction to Computer Statistical	3

Accelerated Option Requirements

Students must complete all credits satisfying degree requirements for the BS and MS programs, with 6 credits overlap chosen from the following courses: STAT 515 Applied Statistics and Visualization for Analytics, STAT 544 Applied Probability, STAT 554 Applied Statistics I, STAT 560 Biostatistical Methods, and STAT 574 Survey Sampling I. (Credit may not be received for both STAT 474 and STAT 574; nor for both STAT 460 and STAT 560.) The graduate courses selected for overlap must be approved by the academic advisors of both the BS and MS programs. All graduate course prerequisties must be completed prior to enrollment. Each graduate course must be completed with a grade of B or better to apply toward the MS degree.

While still in undergraduate status, a maximum of 6 additional graduate credits may be taken as reserve graduate credit and applied to the master's program. Reserve graduate credits do not apply to the undergraduate degree.

Degree Conferral

Students must apply the semester before they expect to complete the BS requirements to have the BS degree conferred. In addition, at the beginning of the student's final undergraduate semester, students must complete a Bachelor's/Accelerated Master's Transition form that is submitted to the Office of the University Registrar and Graduate Recruitment and Enrollment Services. At the completion of MS requirements, a master's degree is conferred.

BS (selected)/Systems Engineering, Accelerated MS

Overview

Highly-qualified students in BS programs have the option of obtaining an accelerated Systems Engineering, MS.

For more detailed information, see AP.6.7 Bachelor's/Accelerated Master's Degrees. For policies governing all graduate degrees, see AP.6 Graduate Policies.

Admission Requirements

Mason undergraduate students majoring in both engineering and nonengineering disciplines may apply to this option if 1) such an accelerated Systems Engineering, MS pathway is allowable from the student's BS program, which will be determined by the academic advisors of both the BS and MS programs and by the SEOR department chair, 2) they have earned 90 undergraduate credits with an overall GPA of at least 3.30, and 3) they have completed all MATH and PHYS requirements. Criteria for admission are identical to criteria for admission to the Systems Engineering, MS program.

Accelerated Option Requirements

Students must complete all credits that satisfy requirements for both the BS and MS programs. Up to two courses (6 credits) of approved master's level courses taken as part of the undergraduate degree may be applied to the graduate degree. The courses selected for this purpose must be approved by the academic advisors of both the BS and MS programs and by the SEOR department chair.

For the BS programs that allow undergraduate electives from the department of systems engineering and operations research, the students may choose the graduate version of such elective courses to replace the corresponding undergraduate courses.

Degree Conferral

Students must apply the semester before they expect to complete the BS requirements to have the BS degree conferred. In addition, at the beginning of the student's final undergraduate semester, students must complete a Bachelor's/Accelerated Master's Transition form that is submitted to the Office of the University Registrar and the VSE Graduate Admissions Office. At the completion of MS requirements, a master's degree is conferred.

Computer Science, BS/Computer Science, Accelerated MS

Overview

Highly-qualified students in the Computer Science, BS have the option of obtaining an accelerated Computer Science, MS.

For more detailed information, see AP.6.7 Bachelor's/Accelerated Master's Degrees. For policies governing all graduate degrees, see AP.6 Graduate Policies.

Admission Requirements

Students in the Computer Science, BS program may apply to this option if they have earned 90 undergraduate credits with an overall GPA of at least 3.30. Students must have successfully completed CS 310 Data Structures, CS 330 Formal Methods and Models and CS 367 Computer Systems and Programming.

Accelerated Option Requirements

Students must complete all requirements for the BS and MS programs, with 6 credits overlap.

Students register for 6 credits of CS 500-level basic courses in place of the corresponding CS 400-level courses required for the undergraduate degree requirements. Specifically, students must register for two of the following courses in place of the corresponding 400-level courses:

Code	Title	Credits
CS 540	Language Processors	3
CS 550	Database Systems	3
CS 551	Computer Graphics	3
CS 555	Computer Communications and Networking	3
CS 571	Operating Systems	3
CS 580	Introduction to Artificial Intelligence	3
CS 583	Analysis of Algorithms	3
CS 584	Theory and Applications of Data Mining	3

Note:

Students are permitted to take additional graduate basic courses in their undergraduate programs. In such cases, those classes cannot be counted toward requirements for the MS.

Degree Conferral

Students must apply the semester before they expect to complete the BS requirements to have the BS degree conferred. In addition, at the beginning of the student's final undergraduate semester, students must complete a Bachelor's/Accelerated Master's Transition form that is submitted to the Office of the University Registrar and the VSE Graduate Admissions Office. At the completion of MS requirements, a master's degree is conferred.

Computer Science, BS/Data Analytics Engineering, Accelerated MS

Overview

Highly-qualified students in the Computer Science, BS have the option of obtaining an accelerated Data Analytics Engineering, MS.

For more detailed information, see AP.6.7 Bachelor's/Accelerated Master's Degrees. For policies governing all graduate degrees, see AP.6 Graduate Policies.

Admission Requirements

Students in the Computer Science, BS program may apply to this option if they have earned 90 undergraduate credits with an overall GPA of at least 3.30. Students must have successfully completed CS 310 Data Structures, CS 330 Formal Methods and Models and CS 367 Computer Systems and Programming.

Accelerated Option Requirements

Students must complete all requirements for the BS and MS programs, with 6 credits overlap.

Students register for 6 credits of CS 500-level basic courses in place of the corresponding CS 400-level courses required for the undergraduate degree requirements. Specifically, students must register for:

Code	Title	Credits
CS 584	Theory and Applications of Data Mining	3
	he following courses in place of the 400-level courses:	3
CS 550	Database Systems	
CS 580	Introduction to Artificial Intelligence	
Total Credits		6

Note:

Students are permitted to take additional graduate basic courses in their undergraduate programs. In such cases, those classes cannot be counted toward requirements for the MS.

Degree Conferral

Students must apply the semester before they expect to complete the BS requirements to have the BS degree conferred. In addition, at the beginning of the student's final undergraduate semester, students must complete a Bachelor's/Accelerated Master's Transition form that is submitted to the Office of the University Registrar and the VSE Graduate Admissions Office. At the completion of MS requirements, a master's degree is conferred.

Computer Science, BS/Information Security and Assurance, Accelerated MS

Overview

Highly-qualified students in the Computer Science, BS have the option of obtaining an accelerated Information Security and Assurance, MS.

For more detailed information, see AP.6.7 Bachelor's/Accelerated Master's Degrees. For policies governing all graduate degrees, see AP.6 Graduate Policies.

Admission Requirements

Students in the Computer Science, BS program may apply for this option if they have earned 90 undergraduate credits with an overall GPA of at least 3.30. Students must have successfully completed CS 310 Data Structures, CS 330 Formal Methods and Models and CS 367 Computer Systems and Programming.

Accelerated Option Requirements

Students must complete all requirements for the BS and MS programs, with 6 credits overlap. Students register for 6 credits of CS 500-level basic courses in place of the corresponding CS 400-level courses required for the undergraduate degree requirements. Specifically, students must register for two of the following courses in place of the corresponding 400-level courses:

Code	Title	Credits
CS 540	Language Processors	3
CS 550	Database Systems	3
CS 551	Computer Graphics	3
CS 555	Computer Communications and Networking	3
CS 571	Operating Systems	3
CS 580	Introduction to Artificial Intelligence	3
CS 583	Analysis of Algorithms	3
CS 584	Theory and Applications of Data Mining	3

Note:

Students complete all MS in Information Security and Assurance core courses and apply the two courses from the above list toward the requirements.

Degree Conferral

Students must apply the semester before they expect to complete the BS requirements to have the BS degree conferred. In addition, at the beginning of the student's final undergraduate semester, students must complete a Bachelor's/Accelerated Master's Transition form that is submitted to the Office of the University Registrar and the VSE Graduate Admissions Office. At the completion of MS requirements, a master's degree is conferred.

Computer Science, BS/Information Systems, Accelerated MS

Overview

Highly-qualified students in the Computer Science, BS have the option of obtaining an accelerated Information Systems, MS.

For more detailed information, see AP.6.7 Bachelor's/Accelerated Master's Degrees. For policies governing all graduate degrees, see AP.6 Graduate Policies.

Admission Requirements

Students in the Computer Science, BS program may apply to this option if they have earned 90 undergraduate credits with an overall GPA of at least 3.30. Students must have successfully completed CS 310 Data Structures, CS 330 Formal Methods and Models and CS 367 Computer Systems and Programming.

Accelerated Option Requirements

Students must complete all requirements for the BS and MS programs, with 6 credits overlap. Students register for 6 credits of CS 500-level basic courses in place of the corresponding CS 400-level courses required for the undergraduate degree requirements. Specifically, students must register for two of the following courses in place of the corresponding 400-level courses:

Code	Title	Credits
CS 540	Language Processors	3
CS 550	Database Systems	3
CS 551	Computer Graphics	3
CS 555	Computer Communications and Networking	3
CS 571	Operating Systems	3
CS 580	Introduction to Artificial Intelligence	3
CS 583	Analysis of Algorithms	3
CS 584	Theory and Applications of Data Mining	3

Note:

Students complete all MS in Information Systems core courses and apply the two courses from above toward the elective requirements.

Degree Conferral

Students must apply the semester before they expect to complete the BS requirements to have the BS degree conferred. In addition, at the beginning of the student's final undergraduate semester, students must complete a Bachelor's/Accelerated Master's Transition form that is submitted to the Office of the University Registrar and the VSE Graduate Admissions Office. At the completion of MS requirements, a master's degree is conferred.

Computer Science, BS/Software Engineering, Accelerated MS

Overview

Highly-qualified students in the Computer Science, BS have the option of obtaining an accelerated Software Engineering, MS.

For more detailed information, see AP.6.7 Bachelor's/Accelerated Master's Degrees. For policies governing all graduate degrees, see AP.6 Graduate Policies.

Admission Requirements

Students in the Computer Science, BS program may apply to this option if they have earned 90 undergraduate credits with an overall GPA of at least 3.30. Students must have successfully completed CS 310 Data Structures, CS 330 Formal Methods and Models and CS 367 Computer Systems and Programming.

Accelerated Option Requirements

Students must complete all requirements for the BS and MS programs, with 6 credits overlap. Students register for 6 credits of CS 500-level basic courses in place of the corresponding CS 400-level courses required for the undergraduate degree requirements. Specifically, students must register for two of the following courses in place of the corresponding 400-level courses:

Code	Title	Credits
CS 540	Language Processors	3
CS 550	Database Systems	3
CS 551	Computer Graphics	3
CS 555	Computer Communications and Networking	3
CS 571	Operating Systems	3
CS 580	Introduction to Artificial Intelligence	3

CS 583	Analysis of Algorithms	3
CS 584	Theory and Applications of Data Mining	3

Note:

Students complete all MS in Software Engineering core courses and apply the two courses from the above list toward the elective requirements.

Degree Conferral

Students must apply the semester before they expect to complete the BS requirements to have the BS degree conferred. In addition, at the beginning of the student's final undergraduate semester, students must complete a Bachelor's/Accelerated Master's Transition form that is submitted to the Office of the University Registrar and the VSE Graduate Admissions Office. At the completion of MS requirements, a master's degree is conferred.