STATISTICS, BS

Banner Code: VS-BS-STIC

Phone: 703-993-3645
Email: statistics@gmu.edu
Website: statistics.gmu.edu

Students may be admitted into this program beginning Spring 2018.

The Bachelor of Science in Statistics is designed to provide a framework for students to develop connections between statistical concepts and theories and their applications to statistical practice. It will prepare statisticians who can use modern statistical techniques to design studies, collect data, analyze and visualize high dimensional data sets, and draw valid conclusions in an increasingly data-centric world. In this program, students will meld the time-tested concepts and theories of statistics with modern methods of analysis, in order to interpret the data that is collected in nearly every discipline and every sector of industry and government.

The BS in Statistics requires a total of 120 credit hours, including major core requirements, concentration requirements, and Mason Core requirements. The program’s major core curriculum provides students with a firm foundation in statistics, mathematics, and computing. Selection of a concentration allows a student to specialize in applied, theoretical, or computational aspects of statistical practice. Students will select one of three concentrations: Applied Statistics, Mathematical Statistics, or Statistical Analytics. The Applied Statistics concentration focuses on developing proficiency in analytical methods applicable to a specific discipline of the student’s choosing. This is accomplished through the requirement to complete a minor in a field that makes substantial use of data analysis. The Mathematical Statistics concentration is designed for students interested in mastering the theoretical underpinnings of statistics and probability; this concentration is recommended for students who intend to continue graduate studies in statistics or whose main focus is on research. The Statistical Analytics concentration blends the disciplines of computer science and statistics in a very modern way and is designed for students interested in applying concepts from statistics and computer science to the analysis of massive data sets.

Graduates of this program can look forward to careers in local, state, and federal government, and in the many industries that conduct scientific research, collect, and analyze data. They will enter the workforce with the ability to impact science, public policy, technology, and industry in a positive way through their expertise in data collection, analysis, synthesis, and interpretation, each with the highest ethical standards. Graduates will also be well prepared to continue their studies in graduate schools if they so desire.

Admissions & Policies

Advanced Placement, Credit by Exam

A score of 5 on the Advanced Placement (AP) statistics exam qualifies students for credit in STAT 260.

Change of Major

Students considering changing their major to Statistics should consult with the Volgenau School of Engineering Coordinator of Undergraduate

Grades

Students must earn a C or better in Major Core Requirement courses as well as in courses required to satisfy prerequisites.

Termination from major

No math, science, or Volgenau School of Engineering course that is required for the major may be attempted more than three times. Those students who do not successfully complete such a course within three attempts will be terminated from the major. Undeclared students in the Volgenau School who do not successfully complete a course required for a Volgenau School major within three attempts will also be terminated. For more information, see AP.5.2.4 Termination from the Major.

Once a student has attempted one of these courses twice unsuccessfully, the third attempt must be no later than the next semester of enrollment, excluding summers. Failure to take the course at that time will result in termination from the major. If the student is unable to take the course when required, the student may request an extension to a future semester; extensions require approval of the student’s advisor, their department, and the Associate Dean for Undergraduate Programs. The deadline for extension requests is the add deadline for the semester in which the course is required.

Students who have been terminated from a Volgenau School of Engineering major may not register for a Volgenau School course without permission of the department offering the course. This applies to all undergraduate courses offered by the Volgenau School except IT 104 Introduction to Computing (Mason Core) and STAT 250 Introductory Statistics I (Mason Core).

A student may not declare any major in the Volgenau School of Engineering if the student has previously met the termination criteria for that major at any time, regardless of what the student’s major was at the time the courses were taken.

Requirements

Degree Requirements

Total credits: 120

Major Core

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>STAT 260</td>
<td>Introduction to Statistical Practice</td>
<td>3</td>
</tr>
<tr>
<td>STAT 334</td>
<td>Introduction to Probability Models and</td>
<td>3</td>
</tr>
<tr>
<td>or STAT 346</td>
<td>Simulation Probability for Engineers</td>
<td></td>
</tr>
<tr>
<td>STAT 354</td>
<td>Probability and Statistics for Engineers</td>
<td>3</td>
</tr>
<tr>
<td>and Scientists II</td>
<td></td>
<td></td>
</tr>
<tr>
<td>STAT 362</td>
<td>Introduction to Computer Statistical</td>
<td>3</td>
</tr>
<tr>
<td>Packages</td>
<td></td>
<td></td>
</tr>
<tr>
<td>STAT 456</td>
<td>Applied Regression Analysis</td>
<td>3</td>
</tr>
<tr>
<td>STAT 463</td>
<td>Introduction to Exploratory Data Analysis</td>
<td>3</td>
</tr>
<tr>
<td>STAT 489</td>
<td>Pre-Capstone Professional Development</td>
<td>3</td>
</tr>
</tbody>
</table>

Website: statistics.gmu.edu

Email: statistics@gmu.edu

Phone: 703-993-3645

For more information, see AP.5.2.4 Termination from the Major.

Pre-Capstone Professional Development

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>STAT 389</td>
<td>Introduction to Exploratory Data Analysis</td>
<td>3</td>
</tr>
<tr>
<td>STAT 390</td>
<td>Applied Regression Package</td>
<td>3</td>
</tr>
<tr>
<td>STAT 391</td>
<td>Introduction to Computer Statistical</td>
<td>3</td>
</tr>
<tr>
<td>Packages</td>
<td></td>
<td></td>
</tr>
<tr>
<td>STAT 392</td>
<td>Pre-Capstone Professional Development</td>
<td>3</td>
</tr>
</tbody>
</table>

Education Statistics

- **Advising**: 2500 Nguyen Engineering Building
- **Email**: statistics@gmu.edu
- **Phone**: 703-993-3645

Statistics Core

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>STAT 260</td>
<td>Introduction to Statistical Practice</td>
<td>3</td>
</tr>
<tr>
<td>STAT 334</td>
<td>Introduction to Probability Models and</td>
<td>3</td>
</tr>
<tr>
<td>Simulation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>or STAT 346</td>
<td>Probability for Engineers</td>
<td></td>
</tr>
<tr>
<td>STAT 354</td>
<td>Probability and Statistics for Engineers</td>
<td>3</td>
</tr>
<tr>
<td>and Scientists II</td>
<td></td>
<td></td>
</tr>
<tr>
<td>STAT 362</td>
<td>Introduction to Computer Statistical</td>
<td>3</td>
</tr>
<tr>
<td>Packages</td>
<td></td>
<td></td>
</tr>
<tr>
<td>STAT 456</td>
<td>Applied Regression Analysis</td>
<td>3</td>
</tr>
<tr>
<td>STAT 463</td>
<td>Introduction to Exploratory Data Analysis</td>
<td>3</td>
</tr>
<tr>
<td>STAT 489</td>
<td>Pre-Capstone Professional Development</td>
<td>3</td>
</tr>
</tbody>
</table>
Mathematics Core

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 113</td>
<td>Analytic Geometry and Calculus I (Mason Core)</td>
<td>4</td>
</tr>
<tr>
<td>MATH 114</td>
<td>Analytic Geometry and Calculus II</td>
<td>3</td>
</tr>
<tr>
<td>MATH 203</td>
<td>Linear Algebra</td>
<td>3</td>
</tr>
</tbody>
</table>

Total Credits: 11

1. Math 123-124 may be taken in place of MATH 113 if student does not have sufficiently high math placement scores to be eligible for MATH 113.
2. MATH 115 may be taken in place of MATH 113 if student qualifies.
3. MATH 116 may be taken in place of MATH 114 if student qualifies.

Computational Skills Core

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS 105</td>
<td>Computer Ethics and Society (Mason Core)</td>
<td>1</td>
</tr>
<tr>
<td>or CDS 151</td>
<td>Data Ethics in an Information Society (Mason Core)</td>
<td></td>
</tr>
<tr>
<td>CS 112</td>
<td>Introduction to Computer Programming (Mason Core)</td>
<td>4</td>
</tr>
</tbody>
</table>

Total Credits: 5

1. Students in the Statistical Analytics concentration must take CS 105.

Statistics

Select nine credits of STAT electives

- STAT courses numbered 440-499 | 9 Credits |

Total Credits: 9

1. May not be used to fulfill other degree requirements.

Technical

Select nine credits of technical electives. Specific course selections must be pre-approved by the undergraduate coordinator. Students may need to choose electives to satisfy prerequisites for some of these courses. In some cases, students will need to contact other departments for permission to enroll.

- CDS courses numbered above 200 | 3 Credits |
- CS courses numbered above 200 | 3 Credits |
- MATH courses numbered above 200 | 3 Credits |
- OR courses numbered above 300 | 3 Credits |
- BENG 322 | Health Data Challenges | 3 Credits |
- CYSE 325 | Discrete Events Systems Modeling | 3 Credits |
- ENGH 388 | Professional and Technical Writing | 3 Credits |
- IT 214 | Database Fundamentals | 3 Credits |
- SYST 473 | Decision and Risk Analysis | 3 Credits |
- SYST 488 | Financial Systems Engineering | 3 Credits |

Total Credits: 9

Concentrations

Select one concentration and complete all requirements.

Concentration in Applied Statistics (ASTA)

Focuses on developing proficiency in analytical methods applicable to a specific discipline of the student’s choosing. This is accomplished through the requirement to complete a minor in a field that makes substantial use of data analysis.

Students must complete 15 - 21 credits in a pre-approved minor, selected in consultation with the undergraduate coordinator. Courses taken to fulfill the minor requirements that are not used to fulfill Major Core or Restricted Electives requirements are considered unique to the minor. At least 15 credits of the minor coursework, technical electives, general electives, and additional Mason Core courses must be at or above the 300 level.

Concentration in Mathematical Statistics (MTHS)

Designed for students interested in mastering the theoretical underpinnings of statistics and probability; this concentration is recommended for students who intend to continue graduate studies in statistics or whose main focus is on research.

- STAT 356 | Statistical Theory | 3 Credits |
- CDS 130 | Computing for Scientists (Mason Core) | 3 Credits |
- MATH 213 | Analytic Geometry and Calculus III | 3 Credits |
- MATH 290 | Introduction to Advanced Mathematics | 3 Credits |
- MATH 315 | Advanced Calculus I | 3 Credits |

Total Credits: 15

1. MATH 215 may be taken in place of MATH 213 if student qualifies.

At least 9 credits of the technical electives, general electives, and additional Mason Core courses must be at or above the 300 level.

Concentration in Statistical Analytics (STLA)

Blends the disciplines of computer science and statistics in a very modern way and is designed for students interested in applying concepts from statistics and computer science to the analysis of massive data sets.

- STAT 472 | Introduction to Statistical Learning | 3 Credits |
- CS 211 | Object-Oriented Programming | 3 Credits |
- CS 310 | Data Structures | 3 Credits |
- CS 330 | Formal Methods and Models | 3 Credits |
- CS 450 | Database Concepts | 3 Credits |
- or CDS 302 | Scientific Data and Databases | 3 Credits |
- CS 484 | Data Mining | 3 Credits |
- or CDS 303 | Scientific Data Mining | 3 Credits |
- MATH 125 | Discrete Mathematics I (Mason Core) | 3 Credits |
- OR 481 | Numerical Methods in Engineering | 3 Credits |

Total Credits: 24

Additional Mason Core

Foundation Requirements

- Written Communication | 6 Credits |
- Oral Communication | 3 Credits |

Core Requirements

- Literature | 3 Credits |
Statistics majors must take the Natural Sciences and Technology section of ENGH 302.

General Electives

The number of general elective credits varies with choice of concentration.

| Total Credits | 7-16 |